Hypothesis testing for an extended cox model with time-varying coefficients.

نویسندگان

  • Takumi Saegusa
  • Chongzhi Di
  • Ying Qing Chen
چکیده

The log-rank test has been widely used to test treatment effects under the Cox model for censored time-to-event outcomes, though it may lose power substantially when the model's proportional hazards assumption does not hold. In this article, we consider an extended Cox model that uses B-splines or smoothing splines to model a time-varying treatment effect and propose score test statistics for the treatment effect. Our proposed new tests combine statistical evidence from both the magnitude and the shape of the time-varying hazard ratio function, and thus are omnibus and powerful against various types of alternatives. In addition, the new testing framework is applicable to any choice of spline basis functions, including B-splines, and smoothing splines. Simulation studies confirm that the proposed tests performed well in finite samples and were frequently more powerful than conventional tests alone in many settings. The new methods were applied to the HIVNET 012 Study, a randomized clinical trial to assess the efficacy of single-dose Nevirapine against mother-to-child HIV transmission conducted by the HIV Prevention Trial Network.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Time-dependent Prognostic Factors on Survival of Non-Small Cell Lung Cancer using Bayesian Extended Cox Model

  Abstract Background: Lung cancer is one of the most common cancers around the world. The aim of this study was to use Extended Cox Model (ECM) with Bayesian approach to survey the behavior of potential time-varying prognostic factors of Non-small cell lung cancer. Materials and Methods: Survival status of all 190 patients diagnosed with Non-Small Cell lung cancer referring to hospitals in ...

متن کامل

Determinant factors of survival time in a cohort study on HIV patient using by time-varying cox model: Fars province, south of Iran

Background and aims: The pandemic of AIDS is a global emergency and one of the biggest challenges in social and individual life. This study aimed to evaluate the survival time of HIV patients and its effective factors. Methods: This historical cohort study was conducted on the individuals infected with HIV in Fars province, south of Iran, during 2006 to 2...

متن کامل

Long-term Iran's inflation analysis using varying coefficient model

Varying coefficient Models are among the most important tools for discovering the dynamic patterns when a fixed pattern does not fit adequately well on the data, due to existing diverse temporal or local patterns. These models are natural extensions of classical parametric models that have achieved great popularity in data analysis with good interpretability.The high flexibility and interpretab...

متن کامل

Modeling and Forecasting Iranian Inflation with Time Varying BVAR Models

This paper investigates the forecasting performance of different time-varying BVAR models for Iranian inflation. Forecast accuracy of a BVAR model with Litterman’s prior compared with a time-varying BVAR model (a version introduced by Doan et al., 1984); and a modified time-varying BVAR model, where the autoregressive coefficients are held constant and only the deterministic components are allo...

متن کامل

A New Method for Detection of Backscattered Signals from Breast Cancer Tumors: Hypothesis Testing Using an Adaptive Entropy-Based Decision Function

Introduction In recent years methods based on radio frequency waves have been used for detecting breast cancer. Using theses waves leads to better results in early detection of breast cancer comparing with conventional mammography which has been used during several years. Materials and Methods In this paper, a new method is introduced for detection of backscattered signals which are received by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biometrics

دوره 70 3  شماره 

صفحات  -

تاریخ انتشار 2014